I love watching the World Cup: It’s more soccer than you could hope for, mixed with national rivalries. What could be better. Now that I am older than most of the players, it dawned on me the intense pressure that they are under, to perform for their country and a question came to me: Just how old are this kids? Let’s find out.

Source Data

With a quick google search, I came up with what seemed like a good source of data for the task at hand. I simply copy and pasted the data from my browser into a text editor to get a file that looks like this:

Alan PULIDO	Mexico	08/03/1991	5	4
Adam TAGGART	Australia	02/06/1993	4	3
Reza GHOOCHANNEJAD	Iran	20/09/1987	13	9
NEYMAR	Brazil	05/02/1992	48	31
Didier DROGBA	Ivory Coast	11/03/1978	100	61
David VILLA	Spain	03/12/1981	95	56
Abel HERNANDEZ	Uruguay	08/08/1990	12	7
Javier HERNANDEZ	Mexico	01/06/1988	61	35
Islam SLIMANI	Algeria	18/06/1988	19	10
Shinji OKAZAKI	Japan	16/04/1986	75	38
...

Cutting and Slicing

Using the power of unix pipes, we can easily extract the data we want from the data. Let’s start by getting all birthdates:

$ cat players.txt | cut -f3
08/03/1991
02/06/1993
20/09/1987
05/02/1992
11/03/1978
03/12/1981
08/08/1990
01/06/1988
18/06/1988
16/04/1986
...

As the man pages say: cut cut out selected portions of each line of a file. In our case, we want the 3rd field in the database.

Now, we can cut again to get the birth year of each player:

$ cat players.txt | cut -f3 | cut -d '/' -f3
1991
1993
1987
1992
1978
1981
1990
1988
1988
1986
...

In this case, we are cutting again, this time using / as a delimiter. Now we have a list of all the players’ birth years.

Histogram

I searched around for some quick utilities that would generate a histogram and the most promising seemed a python utility called data hacks. Unfortunetly, I did not install for me and I didn’t have the inclination to mess with my python installation. I did however, find something similar to what I needed in a blog post about visualizing your shell history. After adapting it a bit to my purposes, I created a small bash function that now lives in my profile:

function histogram() {
  sort | uniq -c| sort -rn | awk '!max{max=$1;}{r="";i=s=60*$1/max;while(i-->0)r=r"#";printf "%15s %5d %s %s",$2,$1,r,"\n";}'
}

This function leverages awk very heavily. awk is a pattern-directed scanning and processing language. I am not very familiar with it, but after seeing how powerful it is, I am definitely want to get acquainted with it.

With this function, we can now get a full histogram:

$ cat players.txt | cut -f3 | cut -d '/' -f3 | histogram | sort
   1971     1 #
   1976     1 #
   1977     2 ##
   1978     5 ####
   1979    15 ############
   1980    19 ###############
   1981    32 #########################
   1982    33 ##########################
   1983    46 ####################################
   1984    58 ##############################################
   1985    66 ####################################################
   1986    77 ############################################################
   1987    70 #######################################################
   1988    65 ###################################################
   1989    62 #################################################
   1990    63 ##################################################
   1991    38 ##############################
   1992    47 #####################################
   1993    22 ##################
   1994     7 ######
   1995     6 #####
   1996     1 #

Notice that the final sort is needed, because histogram returns the values ordered by the number of times it appeared in the data, but since we are talking about birth years, I believe the graph is more telling if it is in ascending order.

Other Findings

With all that in place, it is relatively easy to make a histogram of other data. I remember Malcom Gladwell’s theory in his book Outliers about how most professional hockey players are born in the first part of the year, because of how the developmental leagues work in Canada. With a database of 735 professional soccer players, chosen to be then best 23 of each country, I would expect 61.25 players to be born on each month. Let’s find out how many really are:

$ cat players.txt | cut -f3 | cut -d '/' -f2 | histogram | sort
   01    73 #########################################################
   02    77 ############################################################
   03    66 ####################################################
   04    63 ##################################################
   05    73 #########################################################
   06    59 ##############################################
   07    57 #############################################
   08    57 #############################################
   09    66 ####################################################
   10    46 ####################################
   11    48 ######################################
   12    51 ########################################

Notice that to arrive at this graph, the only thing we changed was the field we extracted from the data, in this case the month of the birthday. Is there a trend here? It does suggest that players born in the first part of the year are favored, but I do not know if it’s statistically significant.

Conclusion

Quick and dirty data analysis on the command line is pretty easy if you know a bit of unix and some awk!